Closed Factorization

نویسندگان

  • Golnaz Badkobeh
  • Hideo Bannai
  • Keisuke Goto
  • Tomohiro I
  • Costas S. Iliopoulos
  • Shunsuke Inenaga
  • Simon J. Puglisi
  • Shiho Sugimoto
چکیده

A closed string is a string with a proper substring that occurs in the string as a prefix and a suffix, but not elsewhere. Closed strings were introduced by Fici (Proc. WORDS, 2011) as objects of combinatorial interest in the study of Trapezoidal and Sturmian words. In this paper we present algorithms for computing closed factors (substrings) in strings. First, we consider the problem of greedily factorizing a string into a sequence of longest closed factors. We describe an algorithm for this problem that uses linear time and space. We then consider the related problem of computing, for every position in the string, the longest closed factor starting at that position. We describe a simple algorithm for the problem that runs in O(n log n/ log log n) time, where n is the length of the string. This also leads to an algorithm to compute the maximal closed factor containing (i.e. covering) each position in the string in O(n log n/ log log n) time. We also present linear time algorithms to factorize a string into a sequence of shortest closed factors of length at least two, to compute the shortest closed factor of length at least two starting at each position of the string, and to compute a minimal closed factor of length at least two containing each position of the string.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inert Module Extensions, Multiplicatively Closed Subsets Conserving Cyclic Submodules and Factorization in Modules

Introduction Suppose that  is a commutative ring with identity,  is a unitary -module and  is a multiplicatively closed subset of .  Factorization theory in commutative rings, which has a long history, still gets the attention of many researchers. Although at first, the focus of this theory was factorization properties of elements in integral domains, in the late nineties the theory was gener...

متن کامل

Robust Control and Closed-loop Identification by Normalized Coprime Factorization

This paper deals with design of a failure tolerant control system where failures are identified using the normalized coprime factorization method. The identification method employed is a closed-loop one, which is also based on coprime factorization; therefore, the method is suitable to the robust control systems. The impact of failure on the closed-loop stability is evaluated by ν-gap metric ob...

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

On semi weak factorization structures

In this article the notions of semi weak orthogonality and semi weak factorization structure in a category $mathcal X$ are introduced. Then the relationship between semi weak factorization structures and quasi right (left) and weak factorization structures is given. The main result is a characterization of semi weak orthogonality, factorization of morphisms, and semi weak factorization structur...

متن کامل

WZ factorization via Abay-Broyden-Spedicato algorithms

Classes of‎ ‎Abaffy-Broyden-Spedicato (ABS) methods have been introduced for‎ ‎solving linear systems of equations‎. ‎The algorithms are powerful methods for developing matrix‎ ‎factorizations and many fundamental numerical linear algebra processes‎. ‎Here‎, ‎we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW‎ ‎factorizations of a nonsingular matrix as well as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014